

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regula	Regulation: R23									
	ELECTRICAL AND ELECTRONICS ENGINEERING (Honors)									
	COURSE S (With effect from 2023-2			h onv	vards)				
Course Code	Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks		
B23EEH101	Electrical Machine Design	III-I	3	3	0	0	30	70	100	
B23EEH201	Power Quality & Enhancement	III-II	3	3	0	0	30	70	100	
B23EEH301	Advanced Power Electronics	IV-I	3	3	0	0	30	70	100	
B23EEH401	*MOOCS-I	III-I to IV-I	3	K		Ξ,			100	
B23EEH501	*MOOCS-II	III-I to IV-I	3	5	LLE	G			100	
B23EEH601	*MOOCS-III 80	III-I to IV-I	3	IUS.					100	
		TOTAL	18	9	0	0	90	210	600	

*Three MOOCS courses of any **ELECTRICAL AND ELECTRONICS ENGINEERING** related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between III Year I Semester to IV Year I Semester

Cour	se Cod	e Category	L	T	P	C	C.I.E.	S.E.E.	Exam		
B23E	EH102	Honors	3			3	30	70	3 Hrs.		
							•	•			
			ELE	CTRICA	AL MAC	CHINE D	ESIGN				
			(Honors I	Degree co	ourse in El	EE)				
Cours	se Obje	ectives: Studen	ts will le	arn abo	ut						
1.	The design basics and limitations of electrical machine design										
2.	The de	The design of DC machine windings & dimensions									
3.	The de	sign of transfor	mer win	dings, co	re, coolir	ng & insul	ation				
4.	The de	sign of Induction	on Machi	ine dimei	nsions &	windings					
5.	The de	sign of Synchro	onous Ma	achine di	mensions	s & windi	ngs				
Cours	se Outo	comes: At the e	nd of th	e course	, the stud	dents will	be able to				
S.No				Or	ıtcome				Knowledge		
5.110									Level		
1.		rate the rating,	_	ic circuit	s, limitat	ions, heat	ing and cool	ling aspects	К3		
		C & AC machine					CD CLI				
2.	,	n the armature,	Sk/N						K4		
3.		n th <mark>e c</mark> ore, <mark>wir</mark> nree <mark>phase trans</mark>			, cooling	g and dim	ensions of s	ingle phase	K4		
4.		n win <mark>dings, ai</mark> r tion Machines.	gap len	gth, cond	ductor siz	ze, stator a	and rotor dir	nensions of	K4		
5.	Selec	t the number	of slo	ts, pole	s and	develop	winding dia	agrams for	K4		
<i>J</i> .	Syncl	nronous Machin	ies.						K4		
					SYLLAF						
		Fundamental <i>A</i>	-				O				
UNI		Design of M		_				•			
(10H		specification,	_	_		uits, mag	netization	curves, hea	ting, cooling,		
		temperature rise	e with sh	ort term	raung.						
		D.C Machines:	,								
UNI	I'_II			Armature	windin	os Com	mutator De	esion of our	tnut equation		
(10 H	(10 Hrs) Construction details, Armature, windings, Commutator, Design of or Selection of No. of poles, Magnetic circuit and Magnetization curve.						tput equation,				
			<u> </u>	., ., .			,				
		Transformers:									
UNIT		Classification o		formers,	core con	struction,	types of wi	inding and d	esign, cooling		
(10 H		and insulation,						=			
		relation between	n core ar	ea and w	eight of i	ron and co	opper, optim	num design.			
-											

		Three phase Induction Machines:
UNIT	Γ-ΙV	Stator, stator frames, rotor, rotor windings, comparison of squirrel cage and wound rotors,
(10 H	Hrs)	slip rings, design of output equation, main dimensions, stator winding, design of squirrel
		cage rotor and wound rotor.
		Three phase Synchronous Machines:
UNI	T-V	Output equation, main dimensions for salient and non-salient pole machines, armature
(10 H	Hrs)	windings and design, selection of stator slots, air gap length, design of rotor for salient
		pole and turbo alternators.
		•
Textb	ooks:	
1.	Saw	hney AK, "A Course in Electrical Machine Design", Dhanpat Rai & Sons, 4 th edition, 2017.
2.	R.K	. Agarwal "Principles of Electrical Machine Design" S.K. Kataria & Sons, 5 th edition, 2014.
Refer	ence l	Books:
1.	Clay	ton A.E., "The performance and design of D.C. Machines", Published by Isaac Pitman and
1.	Sons	s Ltd, 1 st edition.
2.	Say	MG, "The performance and design of A.C. Machines", Published by Isaac Pitman and Sons
۷.	Ltd,	3 rd edition.
e-Res	ource	s:
1.	https	s://nptel.ac.in/courses/108106023

ENGINEERING COLLEGE
AUTONOMOUS

Estd. 1980

		Course C SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
					K23
		III B.Tech. I Semester MODEL QUESTION PAPER ELECTRICAL MACHINE DESIGN			
		(Honors Degree course in EEE)			
Tim	e: 3 H	, ,	lax. N	larks:	70 M
		Answer Question No.1 compulsorily	14210 17.	1411151	70 112
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
		•	10 x 2	= 20 N	/Iarks
			CO	KL	M
1.	a).	List any two design factors considered in machine design.	1	3	2
	b).	What is the significance of heating in electrical machines?	1	4	2
	c).	What factors affect the design of the output equation of a DC machine?	2	4	2
	d).	Define magnetic reluctance in a DC machine.	2	4	2
	e).	What is the purpose of using laminated cores in transformers?	3	4	2
	f).	What is the significance of the ratio of iron loss to copper loss in transformer design?	3	4	2
	g).	What is the main difference between a squirrel cage rotor and a wound rotor?	4	4	2
	h).	Name any two factors that influence the main dimensions of an induction motor.	4	4	2
	i).	Why is the air gap length important in machine design?	5	4	2
	j).	What is the purpose of damper windings in a salient pole alternator?	5	4	2
	1		5 x 10	= 50 N	<u> Iarks</u>
		UNIT-1			
2.	a).	Write the limitations involved in designing electrical machines	1	3	5
	b).	Explain different methods for cooling of electrical machines?	1	3	5
	-	OR			
3.		State and explain the factors which govern the choice of specific magnetic loading and specific electric loading.	1	3	10
		UNIT-2			
4.	a).	Derive the output equation of a DC Machine in terms of its main dimensions.	2	4	5
	b).	A 4-pole wave wound armature has 230 conductors and 23 Commutator segments. Give the table of winding connections in terms of coin sides. Choose a Retrogressive winding.	2	4	5
		OR			

	a).	series field winding.		4	5
		<u>v</u>	2	7	
	b).	A 4-pole, 25 HP, 500V, 600 rpm series motor has an efficiency of 82%. The pole faces are square and the ratio of pole arc to pole pitch is 0.67. Take Bav=0.58 wb/m2 and ac=17000 ampere conductors/meter. Obtain the main dimensions of the core.	2	4	5
		UNIT-3			
6.		Explain how heat generated in a transformer can be managed. Give a detailed scheme.	3	4	10
		OR			
7.		Derive an expression for output in KVA in terms of its main dimensions for 3-phase transformer.	3	4	10
		UNIT-4			
8.	a).	Derive the output equation of an Induction motor.	4	4	5
	b).	Find the value of diameter and length of stator core of a 7.5KW, 220V, 50Hz, 4 pole, 3-phase induction motor for best power factor. Magnetic loading=0/4 wb/m2; Sp. Electric loading=22000A/m, Efficiency=0.86; power factor=0.87. core length/pole pitch= 1.0.	4	4	5
		OR			
9.	a).	Write the rules for selecting stator and rotor slots of three phase slip ring induction motor?	4	4	5
	b).	Determine the main dimensions, no of turns per phase, conductor cross section and slot area of a 250 HP, 3phase ,50HZ, 400v, 1410 rpm slip ring induction motor. Assume specific magnetic loading Bav=0.5T, specific electric loading ac=30000 ampere conductors per meter, efficiency is 90%, winding factor is 0.955, current density is 3.5 A/sq mm. The slot space factor is0.4 and ratio of core length to pole pitch is 1.2. The machine is delta connected	4	4	5
		UNIT-5			
10.	a).	Give the various factors to be considered for the selection of stator slots of a 3- phase alternator.	5	4	5
	b).	Determine the main dimensions of a 25 MVA, 50 Hz, 3-phase turbo alternator, given mean gap density=0.5 Tesla, specific electric loading of 550 ampere conductors per cm. of armature periphery; peripheral speed should not exceed 145 m/s; Air gap is 3 cm.	5	4	5
		OR			
11.		Give the developed view for the R-phase of a 3-phase, 4 pole, 24 slots, and star connected lap winding with coil short pitched by one slot. Each slot contains two coil sides. Phase sequence is RYB.	5	4	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Cou	rse Cod	e Category	L	T	P	C	C. I. E	S. E. E	Exam		
B23	EEH201	l Honor	3			3	30	70	3 Hrs		
				1	•		•				
			POWER	QUAL	ITY ENI	IANCEN	MENT				
			(Но	nors Deg	gree cours	e in EEE	E)				
Cours	se Objec	ctives: Students	will lear	n							
1.	About	About the significance of Power Quality improvement and standards									
2.	About	About Passive Shunt Series Compensators									
3.	About	the Operation ar	nd Contro	of Activ	e Shunt	Compens	ators				
4.	About	Active Series Co	ompensato	ors for Po	ower Qua	lity Enha	incement				
5.	About	analysis and De	sign of Ur	nified Po	wer Qual	ity Comp	ensators				
Cours	se Outco	omes: At the en	d of the c	ourse, th	ne studen	ts will be	e able to				
S.No				Outo	ome				Knowledg		
									Level		
1.	Apply the knowledge of Power Quality issues to explore and classify mitigation										
		techniques. Illustrate the Passive Shunt and Series Compensators for power quality									
2.	enhanc		Shunt and	Series C	ompensa	tors for p	ower quain	У	К3		
3.		ze the Active Se	ries Comr	ensators	for mitig	ation of	nower quali	ty issues	K4		
4.	_							ity Issues	K4		
5.	Analyze the topologies and operation of Active Shunt Compensators Analyze the working of Unified Power Quality Compensators								K4		
	111101	Estd. 1980		2 3 11 2	AUTO	HOHO			12.		
				SY	LLABU	<u> </u>					
	(Characterization	n of Elect								
TINIT	P	Characterization of Electric Power Quality: Power Quality Terms and Definitions -Transients, Short Duration Voltage Variations,									
UNI' (10 H		ong Duration	Voltage v	ariations	, Voltage	e Imbala	nce, Wave	form Disto	rtion, Voltag		
(10 1	118) F	Fluctuations, Power Frequency Variations, Power Acceptability Curves, Impacts of Power Acceptabi									
	(Quality Problems	on End U	Jsers, Po	wer Qual	ity Stand	ards and Po	wer Quality	Monitoring.		
TINIT		Passive Shunt an		-							
UNI		ntroduction, stat		-			-				
(10 H		rs) principle of shunt and series compensators, Analysis and Design of single-phase shunt compensators for power factor correction, Simple Numerical Problems.									
	S.	nunt compensate	ors for pov	wei facto	Correcti	on, Simp	ne Numeric	ai Problems	•		
	Δ	ctive Shunt Co	mpensati	on:							
UNIT			_		STATCO	Ms, Prin	ciple of C	peration an	nd Control o		
	T-III Introduction, Classification of DSTATCOMs, Principle of Operation and Control (Hrs) DSTATCOMs (single-phase PQ and DQ theory-based control algorithms), Analysis are										
(IV E	Design of DSTATCOMs.										

	Active Series Compensation:
UNIT	Γ-IV Introduction, Classification of Active Series Compensators, Principle of Operation and
(10 F	Irs) Control of Active Series Compensators-Synchronous reference frame theory-based
	control, Analysis and Design of Active Series Compensators
	Unified Power Quality Compensators:
TINIT	Introduction, State of the Art on Unified Power Quality Compensators, Classification of
UNI	Unified Power Quality Compensators, Principle of Operation and Control of Unified
(10 H	Power Quality Compensators - Synchronous reference frame theory-based control,
	Analysis and Design of Unified Power Quality Compensators.
Text 1	Books:
1.	Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, "Power Quality Problems and Mitigation
1.	Techniques" Wiley Publications, 2015.
2.	Power Quality Enhancement Using Custom Power Devices – Power Electronics and Power
۷.	Systems, Gerard Ledwich, Arindam Ghosh, Kluwer Academic Publishers, 1 st ed,2002.
Refer	ence Books:
1	Understanding Power Quality Problems: Voltage Sags and Interruptions, Bollen M H J, First
1.	Edition, IEEE Press; 2000.
2.	Instantaneous Power Theory and Applications to Power Conditioning, Hirofumi Akagi, Edson
۷.	Hirokazu Watanabe, Mauricio Aredes, A John Wiley & Sons, INC., Publications, 2007.
e-reso	ources: FNGINFFRING COLLEGE
1.	Power Quality- https://nptel.ac.in/courses/108102179
2.	Power Quality Enhancement - nptel.ac.in/courses/108107157

		Course C	Code: I	323EE	H201
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			
		POWER QUALITY ENHANCEMENT			
		(Honors Degree course in EEE)			
Tim	ne: 3 H	Irs. N	Iax. N	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
	1		10 x 2	1	
			CO	KL	M
1.	a).	Define power quality.	1	2	2
	b).	Explain the major power quality issues in power systems?	1	2	2
	c).	Explain the effect of shunt capacitors on power systems?	2	2	2
	d).	Give the limitations of passive compensation techniques?	2	2	2
	e).	Explain the role of the DC link capacitor in a DSTATCOM?	3	2	2
	f).	Which type of converter is commonly used in DSTATCOMs? Why?	3	2	2
	g).	Give the classification of Active Series Compensation	4	2	2
	h).	Explain the purpose of series compensation in power systems?	4	2	2
	i).	Give the classification of Unified Power Quality Compensators	5	2	2
	j).	Differentiate between UPQC-Q and UPQC-P	5	2	2
		Estd 1980 AUTONOMOUS			
			5 x 10	= 50 N	Aarks
		UNIT-1	CO	KL	M
2.	a).	Classify the general power quality problems and explain	1	3	5
	b).	Explain how end user equipment are affected by power quality problems	1	3	5
		OR			
3.	a).	Illustrate briefly about the following power quality problems A) Long duration variations B) Voltage unbalance C) Power Frequency Variations	1	3	5
	b).	Explain the overview of mitigation methods of power quality	1	3	5
		UNIT-2			
4.	a).	Compare series and shunt compensation	2	3	5
	b).	Illustrate the design of Shunt Compensators for Power Factor Correction	2	3	5
		OR			
5.	a).	Explain the principle of operation of passive shunt compensation	2	3	5
	b).	A single-phase load having $ZL=(4.0 + j1.0)$ pu is fed from an AC	2	3	5

		supply with an input AC voltage of 230V at 50 Hz and a base			
		impedance of 4.15Ω . It is to be realized as a unity power factor load on			
		the AC supply system using a shunt connected lossless passive element			
		(L or C).			
		Calculate (a) the value of the compensator element (in farads or			
		Henries) and (b) equivalent resistance (in ohms) of the compensated load.			
		UNIT-3			
6.	a).	Explain the design procedure of Shunt Compensators for Power Factor Correction.	3	4	5
	b).	Classify DSTACOMs	3	4	5
	,.	OR			
7.	a).	Explain the operation of DSTATCOM used for sag mitigation	3	4	5
	b).	Illustrate the control of DSTACOM with single phase PQ theory-based	3	4	5
		control algorithm			
		UNIT-4			
8.	a).	Explain synchronous reference frame-based control strategy for DVR	4	4	5
	b).	Explain the state of art on Active Series Compensators	4	4	5
		OR			
9.	a).	Classify different types of series active compensators	4	4	5
	b).	Explain the design procedure of DVR	4	4	5
		ENGINEERING COLLEGE			
		Estel 1980 UNIT-5 UTONOMOUS			
10.	a).	Give the classification of Unified Power Quality Compensators	5	4	5
	b).	Explain the design procedure of UPQC	5	4	5
		OR			
11.		Explain the Synchronous Reference Frame theory-based control of UPQCs	5	4	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Cou	rse Cod	e Category	L	T	P	C	C. I. E	S. E. E	Exam			
B23	EEH30	1 Honor	3			3	30	70	3 Hrs			
				1	•	•	1	1				
			ADVAN	CED PO	WER E	LECTRO	ONICS					
			(Но	nors Deg	gree cours	se in EEF	Ε)					
Cours	se Obje	ctives: Students	will lear	n about								
1.	The w	The working principle, types and applications of non-isolated converters.										
2.		The modelling techniques for DC-DC converters using state-space, circuit averaging, and										
۷٠	canonical models to derive converter transfer functions. The working principle, types and applications of isolated converters.											
3.												
4.		esign of power el			s to impr	ove powe	er quality.					
5.	The M	odulation techni	ques for I	nverters.								
Cours	se Outc	omes: At the en	d of the c	ourse, th	ne studen	ts will b	e able to					
S.No				Outo	ome				Knowledg			
									Level			
1.		ze non-isolated e rela <mark>tionsh</mark> ips.	converte	er topolo	ogies an	d detern	nine the i	nput-output	K4			
2.		l an <mark>d d</mark> erive trar vario <mark>us av</mark> eraging						converters	K4			
3.	_	ze is <mark>olated c</mark> onv nships for variou						put voltage	K4			
4.		ze multi-pulse A						chniques.	K4			
5.		re various modul							K4			
									L			
				SY	LLABU	S						
	1	Non-isolated DC	-DC Con	verters:								
UNI	T-I	Buck, Boost, Bu	ck-boost	in DCM	and CC	CM mode	es - Relatio	onship betwe	en input an			
(10 H	Irs)	output voltages, I	Design of	critical i	nductano	e and ca	pacitance for	or Buck, Boo	ost and Buck			
	l	poost converters.										
	ı											
UNI	I'-II	Modelling of No					- 1-1 6 1	-1- 1	11 1 1			
(10 H	irs)	Average switch i	nodel and	1 Averag	ged state	space m	odel for bu	ck, boost an	a buck-boo			
	(converters.										
	1	solated DC-DC	converte	rc•								
UNIT	`-111 1	Forward, Fly-bac			onverters	s in DC	M and CC	M modes -	Relationshi			
(10 F	irs)	etween input and		•		,	und CC	1,1 1110005 -	1 Ciul Oliolli			

UNIT-IV (10 Hrs) Multi-pu methods Symmetr		Front-End (AC-DC) Converters: Multi-pulse converters 6 & 12 pulse converters, Phase shifting transformers, Conventional methods of power factor improvements: Semi-converter, Extinction angle control, Symmetrical angle control – active front-end converters - Single phase: Boost PWM rectifiers.			
		Modulation Techniques:			
		Three-phase Two level H-Bridge Inverter - Sinusoidal pulse width modulation (SPWM),			
UNIT-V (10 Hrs)		Third Harmonic Injected SPWM, Space Vector PWM (SVPWM).			
		Three-phase Five level cascaded H-Bridge Inverter – Phase Disposition (PD), Phase			
		Opposition Disposition (POD), Alternate Phase Opposition Disposition (APOD) carrier			
		modulation schemes with SPWM Technique.			
Text	Books	:			
1.		Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design',			
1.		Wiley and sons.Inc, Newyork, 2 nd Edition, 1995.			
2.	Rash	nid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 4 th			
2.	Edit	ion, New Delhi 2017.			
Refer	ence l	Books:			
1.	Eric	kson R W,' Fundamentals of Power Electronics', Chapman and Hall, 2 nd Edition, 2004.			
2.	Hart	, Daniel W., and Daniel W. Hart. Power electronics. New York: McGraw-Hill, 2010.			
e-reso	ources	ENGINEERING COLLEGE			
1.	npte	1.ac.in/courses/108107128			
2.	npte	l.ac.in/courses/108108035			

		Course C SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)	ouc. I	للالالالالالا	R23
					R23
		IV B.Tech. I Semester MODEL QUESTION PAPER ADVANCED POWER ELECTRONICS			
Tim	e: 3 H	(Honors Degree course in EEE)	Iax. N	[anlean	70 M
1 1111	e: 5 F		Tax. IV.	iarks:	/U IVI
		Answer Question No.1 compulsorily Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
		·	10 x 2	- 20 N	Jorlz
			CO	KL	M
1.	a).	Derive the output voltage relation for Buck converter	1	2	2
1.		How does the polarity of output voltage in a buck-boost converter differ			
	b).	from that of a buck converter?	1	2	2
	c).	What is meant by the average switch model of a converter?	2	2	2
	d).	Write the state variables commonly used in modeling DC-DC	2	2	2
	e).	State the applications of Flyback converter	3	2	2
	f).	Derive input and output voltage for forward converter	3	2	2
	ŕ	What is the purpose of a phase-shifting transformer in a multi-pulse		_	
	g).	converter?	4	2	2
	h).	What is the advantage of using a 12-pulse converter over a 6-pulse converter?	4	2	2
	i).	Distinguish the difference between PD, POD and APOD?	5	2	2
	j).	Explain the advantages of space vector compared SPWM	5	2	2
			5 x 10	= 50 N	Aark
		UNIT-1			
2.		Derive the critical value of inductance and capacitance for Boost Converter	1	3	10
		OR			
3.		Derive the critical value of inductance and capacitance for Buck-Boost Converter	1	3	10
		UNIT-2			
4.		Explain the average state space model for Buck converter	2	3	10
		OR			
5.		Explain the average state space model for Boost converter	2	3	10
		UNIT-3			
6.		Explain the operation of Flyback converter in continuous conduction	3	3	10

	mode			
	OR			
7.	Explain the operation of Push-Pull converter in continuous conduction mode	3	3	10
	UNIT-4			
8.	Briefly explain the conventional methods for power factor improvement?	4	3	10
	OR			
9.	Explain the operation of 12 pulse converter with neat diagrams	4	3	10
	UNIT-5			
10.	Explain space vector pulse width modulation technique for 3 phase two level inverter.	5	3	10
	OR			
11.	Explain three phase five level cascaded MLI with APOD carrier based SPWM technique with necessary waveforms.	5	3	10

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

ENGINEERING COLLEGE
AUTONOMOUS